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Abstract

We propose a screening procedure that allows for the possibility of catching units that might
be missed by current methods, and enables us to estimate the sensitivity of the screening test
used and the prevalence in the initially screened population by using only information that is
collected during the course of the procedure. This potential does not exist with current meth-
ods. The proposed protocol involves pooling units at two stages in order to both screen and to
provide quality control. We propose estimators for all parameters of interest and develop appro-
priate asymptotic inferences. Simple easy-to-implement formulas are obtained. Since units from
first stage negative groups are dependent, the mathematics necessary to keep track of statistical
information obtained at the second-stage is quite delicate. Monte Carlo simulations indicate that
our asymptotic variance formulas are highly accurate while large sample normality depends on
how large the sample size is relative to the concentration of the parameters near the boundary
of the parameter space. (€) 2000 Elsevier Science B.V. All rights reserved.

Keywords: Asymptotics; Drug screening; HIV screening; Group testing; Prevalence: Sensitivity:
Predictive value negative

1. Introduction

The HIV epidemic focused attention on the need for efficient screening of a large
number of units of donated blood. Consequently, the group screening idea of
Dorfman (1943) has stimulated a new literature (Gastwirth and Hammick, 1989; Chen
and Swallow, 1990; Hammick and Gastwirth, 1994; Kline et al., 1989; Litvak et al..
1994; Hughes-Oliver and Swallow, 1994; Gastwirth and Johnson, 1994), and the recent
review by Foulkes (1998).

Much recent work has emphasized the very low prevalence setting. However. in
other potential areas of application such as screening job applicants or employees in
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fety-sensitive jobs for drug use, the prevalence may exceed 1%. Because employ-
's who test positive due to lab error may not have legal recourse, it is important to
corporate a quality control procedure in addition to an efficient screening program.
his paper incorporates the quality control group testing method in Gastwirth and
thnson (1994) with group screening of the original samples (Emmanuel et al., 1988;
ahoon-Young et al., 1989; Chen and Swallow, 1990; Litvak et al., 1994) accom-
ishing both goals. Thus our proposed protocol allows for the possibility of grouping
mples initially and for re-testing a fraction of the negatives in groups. We refer to
ese stages as first and second-stage grouping and to the overall procedure as dual
‘oup screening.
Our procedure is directed at screening programs for characteristics whose prevalence
low or moderate ( <10%) and it applies to virtually any situation where it is feasible
id efficient to do group screening in the first plabe. We are concerned with situations
here a generally imperfect but relatively inexpensive test is used initially and where a
«rfect, buf relatively expensive, “gold standard” (GS) test is used to confirm positive
sults based on the inexpensive test but which is not used to confirm nc:,gaﬁve results.
1V testing for blood that has been donated for transfusion falls into this category, for
cample Nusbacher et al. (1986), Gunson and Rawlinson (1988). In this setting, there is
) information in the collected data for estimating the sensitivity (proportion of correct
ssitive test outcomes) or the prevalence of the characteristic in the screened population
sastwirth et al.,, 1991; Johnson and Gastwirth, 1991; Gastwirth and Johnson, 1994).
e-pooling some of the negatives from the first-stage (FS) enables us to make more
»curate inferences about the prevalence, and the predictive values positive and negative
revalence among the positives and one minus the prevalence among the negatives
sspectively), as well as the accuracies of the screening test. A change in the prevalence
»uld be detected as well as a change in the sensitivity. An added benefit of our protocol
that it allows for the possibility of limiting the number of false negatives that might
1ss through the system undetected, when this is of interest. Our procedure is not
litable if there is no GS test, if the FS test destroys the testing material leaving none
it a second test, or if the added cost of re-pooling and testing is too high relative to
ie benefit of making more accurate statistical inferences or catching false negatives
om the FS.
Our protocol also applies to programs where. a large number of units are to be
sreened and where detecting positive units is very important, as in the case of HIV
:reening for example. Ratcliffe et al. (1998) demonstrated that known methods of
reventing mother to child transmission are cost-effective. They reduce the probability
f transmission from about 0.3 to 0.05, and their cost is small ($1000-1500) relative
» the estimated cost of treating an HIV-infected child ($400,000). Moreover, even
‘hen the child of a treated mother is infected, on average they have an extra year of
IDS-free life. Thus, the use of group screening in antenatal clinics, especially those
1 areas in Laos and neighboring areas of Thailand where the prevalence of HIV in
regnant women ranges from 0.3 to 5% (Loue et al., 1998) should be cost effective.
Jcorporating a second stage may be useful in cases where the prevalence is over 1%.
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The added complexity and cost of our protocol may not be justified in situations
where an occasional false negative is not a serious issue, €.g., gene transfer experiments
(Chick, 1996), or when retesting is not possible, especially since previously uninfected
individuals may become infected during the testing process (Thompson, 1962). How-
ever, our approach is always applicable when mass screening is applied to grouped
samples without confirmatory testing on negative test results, and when it is of interest
to ascertain the accuracy of the first-stage screening test.

The optimum choice of the size of the groups used in the two stages depends on the
prevalence of the trait in the population as well as the accuracy and costs of the tests.
The important issue of deciding on an appropriate group size is discussed at length by
Hughes-Oliver and Swallow (1994). Alternatively, one can assume that group sizes are
determined primarily so that there is minimal loss in terms of sensitivity and specificity
(Sherlock et al., 1995). Kline et al. (1989) and Monzon et al. (1991) have argued that
pooling in groups of size 10-20 is quite reasonable for HIV testing. Kantanen et al.
(1996) noted a dilution effect for both screening and standard confirmatory tests and
thus chose pools of size 5. The World Health Organization has recommended that no
more than five sera be pooled for screening for HIV and that pooling would not be
effective for populations with a prevalence in excess of 2% (World Health Organization:
Global programme on AIDS and global blood safety initiative — recommendations for
testing for HIV antibody on serum pools. Weekly Epidemiological Recorder, 1991, 44:
326-327).

In Section 4.3 we provide an expected cost formula for our two-stage procedure
which can be used to decide on the appropriateness of pooling at either stage for the
specific situation and to select group sizes. Second-stage pooling is virtually always
appropriate provided the FS screening test is reasonably sensitive since the prevalence
of the characteristic at the second stage will be small. It is thus a simple matter of
weighing the cost of second-stage grouping with the added benefit of having more
precise statistical inferences and the possibility of catching false negatives.

The model and estimators of prevalence and screening accuracy are presented in
Section 2. Asymptotic distribution theory is presented in Section 3 and justified in
Appendix A. Monte Carlo simulation results and a discussion of the accuracy of the
asymptotic results is given in Section 3.4. Illustrations and a discussion of cost effec-
tiveness and efficiency are discussed in Section 4, and final comments and conclusions
are given in Section 5.

2. Model and estimators: dual-grouping

Our proposed procedure has two stages. The first stage (FS) modifies the “standard
screening protocol”, where every unmit is tested, by randomly pooling the units into
groups of size k>1. As errors inevitably occur at the first stage, we add a second
stage where negative units from the first stage can be selected, pooled into new groups
and re-tested for the purpose of catching units that were missed at the first stage and/or
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vhere j; = (f) /(1 — n)*~7. We note that

i=vee(X) ~ Mult(V, p = vec(F')). " )

The elements in the second row of X are ungbserved but their sum, x,, is. The
mobserved number of first-stage false negative individuals,

3
Xt = D JXfnj _ &)

i=1

vill be used in the asymptotic analysis.

%.2. Second-stage screening

At the Second-stage, a random sample of units from the kx, negatives is selected.
iach negative unit has probability / of being selected and randomly placed into a group
f size k. The groups are re-screened and those that test positive are given confirmatory
ests. Individual units within groups that are confirmed positive may or may not be
jiven confirmatory tests; such tests would be given to determine precisely which units
vere defective in a confirmed positive group. In the context of HIV screening one
vould generally identify the individual positives, but in screening employees this might
lepend on the negotiations that established the screening procedure, especially as some
sersons are being tested twice. The fraction, f, associated with the fex,, units to be
e-tested depends on the purpose; to make statistical inferences, f may be modest, e.g.
).2, but for identifying as many missed units as possible, it should be one.

We denote the sensitivity and specificity of the screening tests for groups by #, and
J;, namely

11g = pr(S | at least one D out of k), 6= pr(S | no D’s out of k).

We have again (see discussion just after (2)) assumed that the sensitivity of the screen-
ng test does not increase if the group contains more than one D. This assumption is
statistically conservative as more D’s would be detected at the second stage if it were
10t true. As we noted earlier, the prevalence at the second stage is very low so very
few groups will have one, much less 2 or more, D’s.

The procedure reports the following data at the second-stage:

. v=# FS negative units identified for re-testing,
v
m= [E] = #second-stage groups,

xf, = # second-stage true positive groups, (6)
x% = #second-stage false positive groups,
s,gP = #second-stage true positive individuals in true positive groups.
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If individuals within second-stage true positive groups are not confirmed, sé is not
observed.

We note that a reasonable surrogate for the “missing” number of FS false negatives,
Xfy, 1S s,gp/ fng. To see this, first suppose f =1, = 1, as would be the case if we
re-tested all the negatives and with a GS test. In this instance, sfp = Xf. Now suppose
that f =0.5. Then clearly sfp is expected to be half of what it would be if all the FS
negatives had been retested, so dividing it by f makes the proper adjustment. Finally
let n; = 0.9 and f = 1. Then if sfp =9, we could infer that 9 out of the 10 available
D’s were detected so that dividing by #, makes the proper adjustment; dividing by
fng takes care of both issues simultaneously.

In the event that confirmatory testing was not performed on individual units in
second-stage positive groups, only xg’P would be observed rather than s,gp. However, since
the second-stage prevalence will generally be quite low it follows that s§, =3 X =
3, X =Xt Where x3,; is the number of second-stage groups with exactly j D’s. Thus,
x{‘p/ 'fnng would then serve as a surrogate for xp. We make this precise in Section 3.3
and Appendix A.

With k=1, estimators of (7, 7,0, 7, ) are obtained by substituting sfp/ fng or xfp/ e
for xg, the unavailable number of first stage false negatives, in (1). With arbitrary £,
estimators of the prevalences m and n; are obtained by making this substitution as
well and, in the latter case, by also realizing that kx, is needed in the denominator.
Furthermore, E(xy,)=Nnn and E(xfp)zl\-f(l — )t (1 —6) due to (4) and the definitions
at (2). We thus define

P ~ g .
ﬁzxq’-'- 'P/f"g’ ﬁ=i‘2:a 0=1—~_x‘??9 ﬁlz-s‘p ’ ¢=f_m~
N Ni# N — =) k fngxy kx,
(N

if sﬁ, is observed; otherwise, substitute xfp in which case the estimators are defined to

be #*,7*,0 *,ﬁf and |/T, respectively. These estimators are shown to be asymptotically
normal and consistent in Section 3 and Appendix A.

3. Asymptotic distribution theory

In this section we give the asymptotic distribution theory for the estimators given
in (7). The derivation of these results is quite delicate, involving a long sequence of
conditioning arguments, and is thus mainly relegated to the appendix. We begin here
by giving results for the first-stage statistics as N — oo. Then, in Appendix A, we
condition on the unobserved number of false negative units from the first stage in order
to make calculations for the second stage. Asymptotic results for the second stage are
obtained conditionally on FS results and as m — oo. We then link the asymptotics
for both stages to obtain the joint limiting distribution of (X, Xfp, Xa,s5,) from which
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we are able to obtain the limiting distributions for our estimators in (7) by the delta
method.

While our results, given in Section 3.2, generalize those in Gastwirth and Johnson
(1994) for & = 1, the method of proof outlined above is totally different. This is due
to the fact that the second-stage negative individyals are not independent unless & = 1,
and thus the distribution of sﬁ, is no longer straightforward as it was in Gastwirth and
Johnson (1994). The dependence arises from the fact that knowing a particular FS
negative individual’s status regarding the characteristic is informative for the status of
other individuals from the same group. Specifically, if D; denotes that individual i is
D, pr(D,|D,, same FS negative group) =z which will generally be greater than ;.
We thus condition on x5 in order to account for this dependence. Furthermore, when
S <1, it will also be necessary to condition on the actual number of D’s among the
xp that are re-tested. All such details are in given in Appendix A.

7

3.1. Asymptotics for the first stage

We require the asymptotic distribution of the vector Fy = (xp,Xp, X0, X ). As
*m is unobserved, we wltimately integrate over it to obtain the joint distribution of
(p» ¥tp» Xu, S5, ). Recall from (4) that £ = vec(X") ~ Multinomial(V, j). It follows that

VN(E/N ~ p) - N(0, Z;) where Z; = Diag{5} — p 5. Define the matrix

~/

0 4 0  Oe;

y 1 Oe;; 0 Oe;;
1o 0e; 1 e,';
0 0t 0 &

with d=(1,2,...,k) and e; a vector of ones. Note that Af=F, and 4 p= (knn,po(l—

0),q,kn(1 —n))’—uk Define y= (1, 2, p3, i) = (o, Bio(1 — 0),9, (1 — 1)Y. Then
we have

v = AVRE/N — py= VN (Fy/N - U) S F* ~N(0,ZF), Zr = AZ:A)).

(8)
After some algebra,
k{1 =k + o= 1)} —kmp ~Emp S
N 5= * w{l—m}  —wm ) —~kpapa . (9)
* * m(l - p3) kua(1 = p3)
* * * kua{1 — Epg + n(k - 1)}
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3.2. Asymptotic distributions for #, 4, 6, &), and

It is shown in Appendix A that, with specified 7,

x[p ~
(% - Fw)
X
Ff" R
VN | LNy, 3), (10)
N H
58 -
o
\ % =y
where y; = fngus and
km{l =k +nk - 1)} —kum —kpy 3 —k
s * w(l—w)  —pap —kpapty
* * pa(l — p3) k(1 — p3)ps
* * * a‘%
and where
) N L (k=1/1 - 1
a%, =ku(1 — kyy) +ku§ { T (”—g — 1) + (k- 1)1—_"}.

Note that £ = Xr when f =n, =1, which is of course as it should be.

From (10), we obtain the marginal asymptotic normal distributions for the estimators
defined at (7). These are all obtained by using the delta method and they involve tedious
but simple algebra, so we simply catalogue the results. For each of the five estimators

considered, we obtain results just like VN(% — n)-=N(0,62), for example. All that is
needed then are the asymptotic variances and we are done. We obtain

0ﬁ=%{1—ﬂ+(l—n)(fig-l)+n(1—n)2q*},
2_"(1—”) 1 ) _ * '_l}
a,,——’;7t {l+n(f e -1} +m(l—n)g* +nk—1);,

200 -0) k(1 -0)n(1—n).
L R (1—-n)

(11)

1-0 1 -
e e = R R

202 8 ()3 e (1) o)
I PR S - =D nTd) T

_v(i-9) 1
“Hi-g) “”2( n )
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where

_ k-1(1
— 1} +q'a(l—n), q'= ——1}. "
= {fg } rlom, =Ty ('Ig ) ,‘

These formulas reduce to those expected if f =1, =k=k=1. Note that the right-hand
term in brackets in the expression for a‘f, is non-negative since it is increasing in n for
fixed § with minimum at 7 = 0. The last term in brackets in the expression for o2,
is also non-negative provided 1 — <0 since this implies that 1 — n<g; this will be
true in any reasonable setting. The first three formulas coincide with those obtained in
Gastwirth and Johnson (1994) with k£ = 1, and the formula for o'2 coincides, up to
O(xn?), with the formula in GJ for the small m; case they consider. Fmally, note how
the variances vary as a result of group size, accuracy of tests, and the fraction, f.
There is no variance inflation for FS grouping when estimating 7 since the asymptotic
variance is free of £. _The asymptotic variance for |// is free of k since the estimator is
not a fudction of sg A larger FS group results in a larger asymptotic variance for |l/,
etc. Also note the variance inflation for fn, < 1.

The above presumes that the correct value of 7, has been specified. In practice Ng
will not be known unless a “gold standard” is used at the second- stage. Therefore, it
is generally necessary to obtain an independent estimate.

We assume an unbiased estimate is available, say ntjy ~ Bin(n,ng), perhaps based
on a previous study. Qur estimates at (7) are revised so that fj; is substituted for 5, in
all formulas. We a]so assume that n/N — ¢ as N — oo. Then the asymptotic variances
of the corresponding normalized estimates are identical to the terms obtained in (11)
plus an additional term which is due to the uncertainty in the estimate of ng. These
terms are

{n(1 — )} - e) {n(1 — )} —ng) {kn(1 —0)1 —n)}(1 - ng)
Chg Chg ’ c(l - 7[)2'73
n%(l - ﬂg)

4/ F

,0

for m,7,0,m and ¥, respectively. Note that these terms will generally be relatively
small when the second-stage prevalence is small; the term for # will be relatively
small if the two sensitivities are large.

3.3. No confirmation of second-stage individual units

We rely on the asymptotic conditional distribution results (23) and (24) in
Appendix A to justify substituting x§, for sf, when n; is small and st is unobserved
and xfp is. Simple calculations establish that the ratio of the mean (varxance) in (24)

“to the mean (variance) in (23) is 1+O(m; ), and thus if m; is small enough, these mo-
ments will be virtually identical. It follows that results established for sg in Appendix
-A will be identical to those with xg, substituted for s£, up to the O(m) difference in
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mean and variance terms. Thus, when the second-stage prevalence is small, which it
will be in general, we may substitute xg, for sg.

3.4. Monte Carlo simulation

Here, we briefly consider the quality of the asymptotic results. A computer pro-
gram was written to simulate dual-screening data according to our protocol. Through
repeated Monte Carlo (MC) sampling (MC sample size = 1000), we obtained MC
approximations to the mean and standard deviations (s.d.) of our estimators (7), and
to the confidence level associated with nominal 95% intervals, with #, “known”. We
considered situations with N ranging from 50 to 3127, = ranging from 0.001 to 0.2
first-stage accuracies ranging from 0.8 to 0.99, second-stage accuracies ranging from
0.7 to 0.9 with #, within 0.1 of 7, k and k ranging from 5 to 10, and with f = 1.
For all of the situations considered, we found the asymptotic variance formulas (11)
to work remarkably well. Estimators (7) were found to be unbiased with the exception
of a few situations where flg # Ng, and in those cases, the bias was not particularly
large. As an illustration of a situation with the largest biases we observed, consider
N =50, n=005 n=0=08,n, =0, =0.7, fj, =08, k =k = 10. Here, we have ap-
proximate biases of 0.001, 0.022 and 0.002 for estimators of n,; and m; respectively.
and we have corresponding s.d.’s 0.010, 0.104 and 0.010 based on (11), and their MC
counterparts 0.0099, 0.100 and 0.0095, respectively.

While we found that our formulas (11) worked very well over the above range
of possibilities, it was not necessarily the case that the sampling distributions of our
statistics (7) had a nice “bell” shape. For example, in the specific instance referred to
above, the histograms for the simulated #’s and y’s were bell-shaped, but those for
A, 6 and #, were noticeably skewed and coverage levels for nominal 95% intervals
for n,n and m; were 0.95, 0.91 and 0.90, respectively. However, there is a trend that
we found throughout our study. If the mean plus or minus three times the standard
deviation excluded zero and one, all histograms looked reasonably bell-shaped albeit
some might have been slightly skewed, and confidence interval levels were reasonably
close to 0.95. The amount of skewness was observed to diminish for situations with
means that were more distant, in terms of the number of standard deviations, from 0
or 1. Note that this rule works for the above illustration.

How large the sample size must be in order for our asymptotics to apply depends
on the magnitudes of the parameters we are trying to estimate. The closer they are
to zero or one, the larger the sample size must be. To illustrate, we discuss several
more scenarios. First, we attempted situations like the one already discussed. It was
not until we increased = to 0.2, and decreased all accuracies to 0.7 that histograms
looked reasonably bell shaped; confidence levels for n,n and =; were 0.95, 0.93, and
0.94. Then we considered N' = 100 with n = 0.05,n =0 = 0.95,7, = 6, = 0.9.5j, = 08.
In this instance, the estimators are nearly unbiased with MC s.d.’s very close to their
asymptotic counterparts based on (11). The s.d. for = is 0.0069 so, since zero is over §
s.d.’s less than 0.05, we expect the histogram for 7 to look bell shaped, which it does.
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However, the s.d. for 7 is 0.04 and the corresponding histogram is decidedly skewed,
as is the one for 7; since n;=0.0042 and the corresponding s.d. is 0.0035. Monte Carlo
coverages were 0.95, 0.83 and 0.84, respectively. Increasing = to 0.2 and decreasing
all accuracies to 0.8 results in reasonable looking histograms with MC coverages of
0.95, 0.92 and 0.93. With N =500, n = 0.05, 5= 0= 095, 5, = 6; = 09, 7, = 0.8,
there was no bias for 7, #, or m;, corresponding MC standard deviations were virtually
identical to those based on (11), and MC coverages were 0.96, 0.93 and 0.94. With
N = 1000, 7 = 0.02 and the same values as just above, results were again good, and
when = is increased to 0.05, they were very good; MC coverages were 0.95, 0.93 and
0.94.

Based on the simulation it appears that the estimates and the formulas for their stan-
dard deviations are appropriate in the settings for which our protocol is appropriate.
For the large sample normal theory to apply, the simple check of whether the interval
defined by the estimate plus or minus 3 standard deviations does not contain 0 or 1
suffices” When this is the case, the 95% confidence intervals derived_from the asymp-
totic results will have coverage near 0.95. If higher levels of confidence are required,
then one should replace three standard errors by four or five in the criteria.

4. IMustrations and cost/efficiency comparisons

Since our proposal for dual group screening is new, we present two illustrations
based on real data which have been augmented to fit our situation. We then assess the
number of defective units that will be detected at the second stage. And finally, we
demonstrate how to determine when dual group screening is cost effective and relatively
efficient when prevalence, accuracies, and the costs of screening and confirmatory tests
are assumed known.

4.1. Hlustrations

4.1.1. Drug Testing

Smith—Kline, a major drug testing firm, reported that 3.1% of transportation workers
tested positive for drug use (Chemical Regulation Reporter, 1990, p. 781). Gastwirth
and Johnson (1994, p. 975) constructed an artificial data set that was consistent with
known properties of drug tests and which resulted in the above estimate of prevalence
for their dual screening procedure. Here, we modify that data set so that it could
have resulted from dual group screening. We first set £ = 10 and k = 20 and assume
an independent estimate of 7, is available in the form of a binomial (n = 100,7;)
random variable. We assume fly = 0.7 was observed. Assume that the N = 3,200,000
transportation workers are subject to drug testing and that the following data were
 collected: x;, = 93,000, xg, = 10,000, and x, = 217,000. Table 1 gives our estimates,

their standard errors (se) and asymptotic 95% confidence intervals (CI) for £=0.2,0.05,
- and 0.01 for the given values in the table. Precision for =, 0, and v is clearly excellent
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Table 1
Artificial drug data: Estimates, standard errors and asymptotic 95% Cls with f = 0.2, s‘gp = 869; se’s with
f =008, sfp = 869/4, and f = 0.01, sfp = 869/20

Parameter =02

F =005 =001
Estimate se Cl1 se se
n 0.0310 0.00012 (0.0308, 0.0312) 0.00016 0.0003!1
n 0.9374 0.00456 (0.9287, 0.9461) 0.00557 0.00977
[} 0.9572 0.00042 (0.9563, 0.9580) 0.000427 0.000443
n 0.00286 0.0000995 (0.00266, 0.00306) 0.000196 0.000438
v 0.0482 0.000227 (0.0477, 0.0486) 0.000227 0.000227
Table 2
Artificial HIV data: Estimates, se’s and asymptotic 95% Cls with sﬁ,‘: 47
Parameter f=1 f=05 =025
Estimate se Cl se se
n 0.0090 0.00053 (0.0079, 0.0100) 0.00054 0.00090
] 0.9850 0.0077 (0.9695, 1®) 0.0107 0.0150
i} 0.9843 0.0023 (0.9796, 0.9839) 0.0023 0.0023
m 0.00176 0.00091 (0%, 0.00358) 0.00126 0.00178
v 0.0380 0.0013 (0.035, 0.041) 0.0013 0.0013

2Truncated at 0 or 1.

for f as small as 0.01. Precision for n and 7 is good to very good for f as small
as 0.05. With f =1, all inferences would be extremely precise due to the very large
sample size. Precision would be improved with larger #, and larger N. Note that in
all instances, estimates are many standard deviations above 0 and below 1 so our
asymptotic results should be quite adequate in all respects.

4.1.2. HIV Testing

We consider data which was collected by Sherlock et al. (1995) for the purpose of
determining seroprevalence of HIV in British Columbia. For illustration, we focus on
their data for men. Out of 31,271 men tested in groups of size ten, 276 individuals
were ultimately determined to be infected. We thus assume that N = 3127 groups of
size k=10 were formed and that Xip =276 true positive individuals were observed. As
this is all that can be ascertained with certainty, we proceed to formulate an imaginary
data set that is consistent with this one. In the larger data set presented in Sherlock
et al. (1995), there were nine false positive groups out of 600 that screened positive, and
thus we set x5, =45 to be roughly consistent with that information. Assume x, =2, 390.
We let k = 10 and assume sg, = 4f is observed for f € {1, 0.5, 0.25}. Table 2 gives
inferences for the basic five parameters. The precision is quite good. There is again
little or no loss in accuracy for =, 0, and Y with smaller values of f while the se’s for i
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and m; are increased by a factor of 2 in reducing f from 1 to 0.25. Note that while our
asymptotic standard errors will be accurate in this setting, the large sample normality
of the results is questionable for 1 and =; since the corresponding Cls overlap one and
zero, respectively.

As part of our MC study, we simulated data with parameters that were very similar
to the estimates obtained in Table 2. In that simulation, estimates were very close to
unbiased, MC standard deviations were exceptionally close to those based on (11), and
MC coverage levels for z,n and m; were 0.96, 0.91 and 0.91, respectively. If fs,'}, had
been observed to be 10 or larger, the asymptotic normality would not have been called
into question according to our suggested criterion (estimate plus or minus 3 standard
errors not overlapping zero or one).

4.2. Catching missed units

We consider the potential benefit of second stage screening in terms of detecting
units that would otherwise have been missed. The number of first-stage false neg-
ative units that are detected at the second stage is s, With FS individual testing
and no second stage, the expected number of detected units is Ny, while with dual
group testing it is approximately Nnn + Nfn(1 — n)ng, regardless of k and k, and
provided the FS group test has the same sensitivity as a single test. For the condi-
tions listed in Table 3 with f =1, N = 65,430, and = = 0.01, say, we expect to
catch around 647 ef the 654 expected defective units with individual sampling, while
we would expect to catch virtually all of the defective units with the dual-grouping
procedure.

The higher the prevalence, the greater the potential for dual screening in terms
of catching appreciable numbers of individuals that would otherwise have escaped
detection. As the prevalence of characteristics’ like HIV-infection varies widely one
could save money by instituting a group testing quality control system in regions of
relatively high prevalence, e.g., greater than 0.001. If further studies corroborate that
the accuracy of the current screening tests are reasonably high for groups of size 5 and
10, the savings in lives alone with dual testing would justify its use. Further research
is needed to determine the best combination of the first-stage method and the quality
control (second-stage) screen.

Table 3 .

M=$10° [=1,7=099, 0=0995, ng =098, 6, =099, k=F=10, cs=5250=c;

T cy =85 Cgs = $25

N Ni/N;  sdy(f)  van(f)/vani(if) N Ni/N2  sdy(f)  vary(f)/var (1)

. 0.0001 990,100 3.0 0.010 3.0 941,800 297 0.010 2.96 ’

0.001 948,100 2.87 0.0033 2.85 767,300 244 0.0037 241

0.01 674,200 2.07 0.0013 1.91 276,700 0.95 0.002 0.87

0.05 331,600 1.09 0.00094 0.75 84,200 0.38 0.0019 0.26
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4.3. Cost/efficiency considerations

As previously mentioned, it will not be cost effective to group individual units in the
first stage if the prevalence is above 0.1 since too many FS groups would test positive.
However, grouping at the second stage is feasible since the second-stage prevalence will
generally be low. In this subsection, we give some formulas for determining whether
or not dual grouping is effective for particular situations.

The expense associated with screening tests derives from the cost of the test kits
which are used and from the time and effort on the part of laboratory technicians. Thus
the costs differ due to the difference in technician time. Let the cost of a screening kit
be cg for both stages. Assume the cost of technician time for a group of size r is ¢,
for r=1,2... . Let the cost of a confirmatory test be cg. Then for a given sample
size, N, and fixed group sizes, the expected cost of first-stage grouping is

E(Cost 1) = N[(1 — g)cgs + kx(k > 1){1 — (1 — n)F}ncgs + cs + ¢z, (12)

where y(-) denotes the indicator function. The approximate expected cost of second-
stage grouping is

ECost2)= YL gk + 1){1 - (1 - 71

+(1 — &) (1 = B)cgs + s + i} (13)
In the event that only x;,, rather than s§,, is observed at the second stage, we obtain
. N - -
E(Cost2*) = %f[{{l ~ (1 = &1 Mgces + (1 — 71)F(1 — g )cgs + cs + ¢}l
(14)

The total expected cost, E(Cost), is the sum.

We first consider a brief illustration of how one can use our formulas to decide
whether or not a second-stage is warranted. Consider a situation where group screening
is being done and it is of interest to decide whether or not to use a second-stage
screen as well. Suppose 100,000 units are to be screened and that reasonable guesses
for FS sensitivity and specificity are 0.95 and 0.99, respectively, and that second-stage
accuracies are 0.9, and that k= 10, k=50. Assume the prevalence is 0.02, the cost of a
GS is cg; =825, the cost of a screening test is cs=3$2.5, that the cost of pooling per unit
pooled is $0.25, and that costs are the same for FS and second-stage pooling. Finally,
assume that x, is observed in the FS, but only xﬁ, is observed at the second-stage. Then
with f=0.5, the expected cost for FS sampling is $241,976 (using formula (12)) while
the expected cost for second-stage sampling is $13,477 (using formula (14)), which is
about 5% of the total cost. Re-testing individuals in confirmed positive second-stage
groups results in a second-stage cost of $35,316 (using formula (13)). The standard
deviation of # is 0.0101 which can be compared with an “optimal” s.d. computed
with the use of a GS test at the second stage and with f =1 of 0.0049. Increasing
the prevalence to 0.05 and reducing f to 0.25 results in FS cost of $499,919 and
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second-stage cost of $5,356, which is around 1% of the total. Confirming individuals
in true positive second-stage groups results in a second-stage cost of $30,845 (using
formula (13)). The s.d. for 7j is 0.0031 compared with the “optimat” value of 0.0010.

The protocol with £ =1 will be preferable to dual group screening if the prevalence
of the trait in the screened population is too-high. The cutoff will depend on the relative
costs. In order to illustrate how to select k, imagine that a fixed amount of money, say
M, is available for screening and that the objectives are to screen as many individuals
as possible and to obfain accurate estimates of the parameters. Then let N; denote the
sample size which results in an E(Cost) =M, for dual grouped screening. Next, let N,
denote the corresponding sample size with & = 1. The N;’s will vary as we change the
scenario. Larger sample sizes for the same cost would generally be preferable. Suppose
that there is particular interest in estimating the sensitivity of the FS screening test.
Assume that & has been selected to be small enough that the sensitivity for testing FS
groups is the same as that for testing individuals, in which case it is appropriate to
compare variances of estimators for the two types of dual screening. Let var;(%): i=1,2,
denote the variance of the corresponding estimators of 7 based on FS grouping (i=1)
and FS individual testing (i = 2). These formulas are obtained from (11).

Now consider a scenario which is comparable to the HIV illustration discussed in
the previous subsection. Table 3 gives values of Ny, Ni/N,, sdi(1}) and var,(#)/var,(i})
for the conditions listed there. If we were using a “gold standard” which costs $5 to
administer, we would prefer to use dual group screening at least for n<0.01, and
possibly even_for m<0.05. While we are able to screen about 10% more units if
7 = 0.035, the variance of 7 is 33% higher under dual grouping. On the other hand,
if ¢gs = $25 under the same circumstances, there is a clear preference for k =1 if
7 = 0.05, a slight preference for k = 1 if = = 0.01, and a clear preference for dual
group screening if ©<<0.001. It is evident that with larger costs for the “gold standard”
relative to the cost of regular screening, smaller prevalences are required to prefer dual
grouping. This is due to the fact that, as this relative cost increases, it is increasingly
expensive to re-test all individuals in true positive groups and the probability of a true
positive group increases with larger prevalences.

As an alternative strategy, one could re-test individuals in positive groups with a less
expensive screening test and then confirm only positive units with the gold standard
cf. Kantanen et al. (1996). Modifying the expected cost formulae appropriately, the
analogous results to those in Table 3 suggest that dual grouping would be comparable
to or preferable to k=1 for all circumstances in Table 3. Additional comparisons with
k =k =1, denoted as case 3, result in ratios for vars(#)/var(#) in the range from 1.2
to 5 with cs = $5 and from 0.38 to 5 with g = $25.

A more extensive analysis could be performed where the variances of estimators of
other parameters were considered. Recall that the asymptotic variances of 7 are free
from k so that grouping or not at the first stage is irrelevant for estimating n. See
Gastwirth and Johnson (1994) for further discussion of the cost-effectiveness of dual
screening with k=1 when compared with the current procedure of FS individual testing
only.
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5. Conclusions

We have introduced a new method of collecting and analyzing screening data whe
the main goal can be either to make inferences about the population prevalences (b
fore and after FS screening) and FS screening test accuracies, or to remove certal
individuals from a given population, or both. Simple and accurate hand calculator fo
mulas are provided, which can be used to generate confidence intervals or hypothes
tests about the various parameters when the sample size is large enough. In particula
one can easily use our results to check whether the accuracy of the FS screening te
has declined over time. This is very useful when the detection of positive units
of primary importance. Pooling samples limits costs and dual-screening provides fi
quality control.
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Appendix A.
A.1. Asymptotics for the second stage

All of our distribution theory for this section will be conditional on F, define
in (8), which contains the FS information. We assume the sequence of conditione
values tends to a vector of numbers F* in the range of possible values for the limitir
distribution.

As N — oo, the random variable v — oo in probability since v ~Bin(kxy. /) ar
X, — 00 in probability as N — oco. Thus, m = [p/k] — oo in probability. It will t
necessary to condition on the actual number of D’s among the x5, that are re-tested.
define D’ to be the number of D’s out of the xz, that make it through the first screen ar
are selected for pooling and re-testing. We proceed to obtain the asymptotic condition
distribution of m,D’|Fy, properly normalized.

We first note that

anF,; ~ b”lx,. ~ Bin(Exns )

D'\pym ~ D'|y, xum ~ Hypergeometric(fxy, x, km).

Sincexnloo as N — oo, we have

(@)

LN, ra - 1)),
F;
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from which we obtain

e (31

kx,

Loy (f(l f)
. ” ) - (15)

by Slutsky’s theorem. More elaborate versions of this same type of argument are
employed repeatedly below. The results (8) and(15) can also be obtained directly
from local limit theorem (Okamoto, 1959) arguments, which implies a type of “strong
convergence” which we discuss below.

We require a justification that the limiting joint distribution for (Fy, V3) is the
distribution one obtains from combining the limiting conditional for’ V* |F Y and the
limiting marginal for F*. In this event, since the limiting conditional in (15) is free
from F*, we obtain that V3 is asymptotically independent of Fy.

Okamoto (1959) essentially shows that his continuous approximation, which ap-
plies directly to discrete distributions like ours, converges in accord with Sethuraman’s
(1961) definition of strong convergence. This strong convergence applies to both our
conditional and marginal results, and consequently Sethuraman’s Theorem 1 applies
directly to the continuous versions. Thus, we obtain strong joint asymptotic conver-
gence of the versions to the prescribed joint distributions, which implies convergence
in distribution. Okamoto (1959) further shows that the CDFs for the discrete random
variables and their corresponding continuous versions become arbitrarily close for large
n. So, while our actual distributions do not converge strongly, they are arbitrarily close,
on intervals, to distributions that do converge strongly. All of our convergence results
below can be forlhulated entirely as local limit: results. Thus the above argument will
apply in each case. For brevity, we make no further mention of these technical details.

Now it is straightforward, using the density function and Stirling’s formula, to show
that for, say W ~ Hypergeometric (N,M,n), with M/N — r and n/N — s, then

Ja (% - Aﬁl) LN, (1 - r)(1 —5)).

Letting W = D/, N = kxo, M =xg, and n=km, (8), (15) and the above imply
X _ xe/N ®, kr(1 - r]) mk

Frn  Fxa/N kg ™ D
Vim (ﬂ _ i‘_fn) LN@m(1 - m)1 - £))
km  kx, F30:
and hence
\/ﬁ(D’ xﬁ;) —L-)N( ,7[1(1“7:1)(1 f)) 16

as N — 20. Thus (15) and (16) imply

fm L=0
AT (00 (F aes)

mk kx, Fy kqf
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since the limiting distribution in (16) is free from the limiting value ¥*. Furthermore,
since the limiting normal distribution in (17) is free of F*, the limiting pair above is
independent of the limiting random vector F*.

Now consider Wy = (F};/N, mk/kxy, D' /mk — xg,/kx,). Define y = (1. f,0)". Then
due to (8) and (17), we have established that, asymptotically,

VR(Wg — )5 Ne(0, Block Diag{Zr, Z5}).

Then define Yy = (Fy ,m/N,D’/NY, and the transformation h(W) = (W,, W, W3. W,.
kW3W5/k,kW3W5W6 + WsWs)'. Then h(WN) = YN’ and

’;lll
]
i | w
kfus/k
kfua
(1 0 0 0 0 0
01 0 o0 0 0
ﬁ()001oo o_h()14o
"=lo 0 0o 1 o o |\ n
0 0 fkfk 0 kmk 0
\O 0 0 f ku kms)/
1t follows from the delta method that, asymptotically,
= VN(Yy — (1) 5 Ne(0, Zy = (y) Block Diag {Zr, Zs}h(Y).  (18)
where
Zr ZrG'
Zy= ,
GZr GZFGI +HZBH'
. —kmpsfk  —popsfk 1—u3)/k kua(1 — p3)/k
GEr—kf mpsfk —papsfk sl = ) na(1 = ). )
—kmps  —pops (1 —ps)  pa{l = kpa 4wk - 1)}
GZpGl'f-HZBH'
g (U SRR 1= S RSO )k )
* pa{l = flpa+ fr(k — 1)}

In order to obtain the limiting distribution of sfp, we require the joint limiting dis-
tribution of the vector of counts, say {D;: j =1,...,k}, where D; is the number of
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second-stage groups with exactly j D’s. It is straightforward to show that

IT- (")Dj ({3,-})_ " (19)
(») |
Define normalized values for the D;’s, and for D/,

. D,
Dm,—\/_(";j —pj)a
k : . .
pj= ( ')”{(1“”1)1‘ o=

Note that 3"}, jD}; = VkDj; since 3 jD;=D'.

In Section 5.3, and using (19), we establish conditional joint asymptotlc normality
of the D;,’s by proving a local limit theorem. Defining Z,, = {D};: j ...k}, it is
thus established that

pr({D;: j=1,....k}|Fg,D',m) =

. | s
1,....k D,,',":x/k_m(E —m).

* L * * *
Znlesppm—Z ~RN(0, zD,j;]z = VkD' ) 20)
Zp=Diag{p} - pp’, P=(Pr--. Pty
as m — >c, and where RN(-, -, -) denotes a restricted (singular) normal distribution with
given mean vector, covariance, and restriction, and where we have conditioned on the
sequence of possible values D/¥ such that their limit is D™. Since the distribution is
free from F*, F* and Z* are independent, conditional on D"*.

Remark. As a check, we should be able to obtain the distribution of the limiting
random variable D' x =3 jZJ’-“/\/I? from the unrestricted distribution for Z*. Since
d Zpdfk = ny(1 — m), this is indeed the case.

Finally, we obtain the limiting conditional distribution of s3,. Let xg,j denote the
number of second-stage true positive groups that contain exactly j D’s. Then st’p =
3 Jx; and xi =3 x3 ;. Conditional on the values ({D;},mD’), xg;’s are independent
and Binomial, namely

xtgp,.F D' {D;}m ™ Bin(Dj, n).

Thus if the D;’s are known, the Ju:g s are independent of everything else. Since D; — oo
in probability as m — oo, it follows that the \/— (xfpj/D, 1g) converge, condmonally,
to independent N(0,7g(1 — 7g)) random variables. Furthermore, since D; ;/m — p; in
probability as m — oo, we obtain

L s
Vi = Vm(xg;/Dy — 1g) = V' ~ N(0,ng(1 — ng)/ p;)
independently as m — oco. Since this limiting distribution is free from (F*,D™*,Z*),
we have asymptotic independence. Then defining V; =xtgpj/Dj, we have established

Ve = dSmVi— 1Y i =1,k 5V ~ Ny(0,na(1 — n,)Diag{1/p}).  (21)
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Finally, we require the limiting joint distribution of 7, = {Ty; = Vmxgim —
ping): j = 1,...,k}. Defining Z; = D;/m, we note that T, = \/_(V, p]qg) The
limiting dlstnbutlon we require is then the joint dlstnbutlon of T} = {Vm(Z}V; —
Pitlg): j=1,...,k}. Define the transformation g(Z, V' )= {Z;V;: j=1,...,k}. Define g(-.-)
to be the denvanve matrix of the transformation. Then g(Z, V)= (Dlag{V} Diag{Z}).
Evaluating, we obtain g( p, ngex)=(ngls, Diag{ p}), and hence using (20), (21) and the
delta method,

T L ngZ* + Diag{p}V*., Z°LV". (22)
Thus normalizing s§, = Y jxg,;, We obtain, conditionally
Stgb L oo * : *
vm " — kming = d'(ngZ" + Diag{p}V'™)
F3.Dm
~ 35Z; g + N(0,1g(1 = ne) 37 py)

= N(VED™ g, kmng(1—ng){1+m(k = H}).  (23)
Similarly, and due to (20), we have unconditionally

E,L;Z;-’) (e;) . ((0> (Po(l-Po) kny po ))
k. = ~ z NNZ 3
=%} a 0 km po km(1 —m)

and using this and (22), we obtain, conditionally,

x ) . < ok
vm (;“’ -(1- Po)’lg) 5 el(ngZ* + Diag{ p}V*) ~ 1,2 Z; |35 Z; (24)

kD" +N(0,ng(1 — ng)(1 — po))

=N(’lg‘/'; o I_’o sﬂs{PO(l—Po)‘mpg}

s

+ ng(1 —mg)(1 - po)) . (24)

A.2. Joint asymptotic distribution of (%ip,Xg,%a,Sg)

By (23), we have established

vm iﬁ-—D"n—g ={vm ig‘g—kﬂmg
moom . m

i (2 )}

F;.:.D:,,‘_.m

5 N0, kmymg(1 — n){1 + m(k — 1}) (25)
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which is free from all conditioning. Since m/N — kfq/k in probability as N — oo, ~  Substituting (28) into (27), and simplifying we obtain
we define m% =VN(m/N —k fq/k). Defining D}y =VN(D'/N — k), we obtain from ,
(25) that, : pr({Dj: Jj=1... ,k}|FI*g,D,;,m)
- (s& D'n L : | AN k-1)2 ! 2
\/EV— ﬁ? - Tg = N(0, 02 = fqnmg(l —ne){1 + m(k - l)}) = l:[l (1) 2nm)~&=1Y \/I;{m(l -7 )}—(L(k+1)/4)+(l/-)Bm(1 +0o(m™1y).
Ry m 4
(26) (29)
We are now in a position to obtain the joint asymptotic distribution of (x,p,xfp,x,,,sq,) . "

Recall that the asymptotic distribution of normalized Yy = {(x¥ip/ N, x5/, xa/N,x/N, Bp= (1 + D /Vimm ) (1 — D /Vim(1 — my)y™- >

m/N,D'/NY, namely Y%, is obtained from (18) as Ng(0,Zy). Then using (18) and H (1 + D;,;/v/mp;YPi(1 = D, [\/mpo)=P+ .

(26) we have, unconditionally,
Furthermore,

Y L
. = N4(0, Block Diag{Zy,a2}).
(msfpm D’ng/ﬁ)) 7(0Block Dise{Zr. )

n(Bn)=—3 {Z( jV1Pj + Dy Y = (DY /(m(1 — nl))} +0((m)™')
Define Y =(V5,s8/NY,y*=(h(y), kfng/,u)’ and Y,;*_\/_ (Y —y*). Then another

1 1
splication of th delts method yiclds =— {E( e (—+—) +2 3 D3y D/ po—(Di P (m(1-m)
L Iy dﬂg pPi Po j<i’
Yi* =S Ny(0,Zy+), Zy+ = s
N 7( Y ) Y (d,”g 0% + ’1203,) +0((m)—l/2).

where d is the submatrix of Xy, defined at (18), corresponding to the asymptotic

Define the k x k matrix C = ¢;; where ¢; = (1/p; + 1 d ;=1 Th
covariances for Yiormalized D', and o2 is the corresponding asymptotic variance. The o cj_where cu = (1/p; +1/po) and c; = 1/po. Then

C = Diag{1/p} + exe}/po and C~' = Diag{p} — pp’ where p = (p1, p2,.--. ;1)

transfonnaﬁox} was ?f the form s(w) = (wl,...,ws,*.m + r,g.w.ﬁ)’. Finally,_aﬂer S(fme Recall that £p = C-' and Z? = (D, * Y. Then
algebra and integrating out unobservables, we obtain the joint asymptotic marginal
distribution for (X, Xsp,%a, Sy, ), namely result (10). n(Bm) = —1{(Z2Y 2525, — (D /(mi(1 = m))} + O((m)~"2). (30)
A.3. Proof of (20) ‘ We furthermore note that
: k
Starting with (19) and using Stirling’s approximation, we obtain |Zp| = |Diag{ p}||&x — Diag{1/p}pp’| = 1 p(1 — p'Diag{1/p} p)
j=1
pr({D;: j =1,...,k}|Fg,D},,m) :
; E (k\ . ,
D; ; ’ = — k-‘,
H’;, (f) ’ (21tm)“("—1)/2\/];(D'/mk)D +12(} _Dl/mk)mk—D +172 , {H PJ} b= ,l;[o (1) 7'75(1 )
= %
* (D;/m)PrH12(1 — D, fmyn—Ds+1/2
l_[j—]( J/ )D ( | +/ )m - IlfI (k) nllc(k+1)/2(l _ nl)""‘*”/z. 31
x(1+0(m™)), : @7 =0 \J
where D, = Z'; y Dmj, the number of second-stage groups with at least one defective. : So consider the lattice
Recall the definitions just after (16) and furthermore define D;, D;. Th ':
! (16) © D}, = ¥ju Dj- Then ; {23 = VmDyim=p;): i =1,....k TjZ3; = VDS, all possible D; and m}.
Plip. D;'j 1_&._1, D;,+ ZI \/—D/*
m T ym m vm’ 28) . The volume of a rectangle defined on this lattice is m*~'¥2, We have thus estab-

D' D lished the local limit theorem (Okamoto, 1959) by utilizing (30) and (31) in (29), and
Pl + S : by choosing a sequence of values from the above lattice such that they converge to
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:1,...,k} = Z*, namely

m(Z*;0,2p)
M(JZ750,kmy(1 — mp))’
v of a Np(0,2p) p.df and a N(O,km;(1 — n1)) p.d.f and where the Z;'s are
i so that Zj:l JZf = VEkD'*. We have now established (20) since (32) implies
:nce in law.

. (32)

m m*=D2pr({D,}|Fy, Dyt m) =
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